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1 Introduction

1 Introduction

The origin of graph theory may be traced to 1735, when Leonhard Euler solved the

Seven Bridges of Königsberg problem. Over the centuries, many mathematicians were

involved in developing the ideas and concepts of modern day graph theory. Especially

one famous problem obtained attention over the boundaries of mathematical society,

the Four Color Problem. The problem questions if it is true that any map drawn in the

plane may have its regions colored with four colors, in such a way that any two regions

having a common border get different colors. Many incorrect proofs have been proposed,

such as Kempe [51], still the problem remained unsolved for more than a century. In

1976 K. Appel and W. Haken [3] could finally prove it to be true in a computer aided

way, by checking every single case of a gigantic case distinction. In this thesis we will

try to expand and collect the knowledge of such colorings of plane graphs under further

restrictions given by the faces of the graph.

The subject of graph coloring is one of the most important concepts in the domain

of graph theory with applications in computer science, economics, engineering, biology

and many other fields. Such as data mining, image segmentation and networking.

Many papers have been published already regarding vertex colorings of graphs. We

are interested in those refering to plane graphs and furthermore to the faces of plane

graphs. By that we mean vertex colorings that fulfill special requirements regarding the

faces each vertex is incident to. Some of the first results in this field are the ones of

Plummer and Toft [62] where they look into cyclic colorations of planar graphs. These

are colorations where for any face bounding cycle F , the vertices of F have different

colors. Their results are further developed in [45], [30], [66] and [46].

Often times results for plane graphs are obtained by looking at hypergraphs somehow

induced by underlying plane graphs. One idea in this area is to look at face hypergraphs,

that are hypergraphs whose edges are formed by the vertices incident to a face of a plane

graph. If a hypergraph is k-colorable avoiding any monochromatic edges, the underlying

plane graph can be colored in k colors avoiding monochromatic faces. In the same way

if a face hypergraph is k-choosable that means for each assignment of lists of colors

of sizes k to its vertices, there is a coloring of the vertices from these lists avoiding a
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1 Introduction

monochromatic edge, the underlying plane graph can be colored from those lists avoiding

a monochromatic face. This concept is researched for different surfaces in [56] and [28].

Kobler and Kündgen [53] explore the chromatic spectrum of face constrained plane

graphs. Therefore they look at three different types of constraints: A face is constrained

by C if it must contain two vertices of common color, by D if it must contain two vertices

of a different color and by B if both conditions must hold simultaneously. A coloring

of a graph G satisfying the facial constraints using k colors is a strict k-coloring. The

chromatic spectrum of G is the set of all k for which G has a strict k-coloring.

Furthermore Kündgen, Mendelsohn et. al. [52] investigate mixed colorings for planar

hypergraphs. That are hypergraphs where the bipartite edge vertex incidence graph

is planar. Mixed means that there are two types of hyperedges C-edges in which at

least two vertices have common color and D-edges in which at least two vertices have a

different color. Further research can be found in [26].

In the first part of this thesis we will focus on conflict-free and unique-maximum vertex

colorings, where for every face there is a special vertex that is colored uniquely. The

research about this topic began for hypergraphs induced by geometric shapes in [31],

[67], [36] and [29]. Deterministic algorithms were constructed in [4]. It was later revisited

by Cheilaris [18]. Fabrici and Göring [32] and Wendland [72] obtained the latest results,

which will be presented in this thesis.

One application of conflict-free and unique-maximum colorings is the modeling of

frequency assignment for cellular networks [17]. Such a network consists of two kinds of

nodes and can be modeled by graph colorings: Base stations and mobile agents. Base

stations, represented by the vertices, have a fixed position. They are the backbone of the

network with which the mobile agents communicate over different frequencies. Every

base station has a fixed frequency, which is represented by the coloring C, where each

color represents one frequency. If a mobile agent wants to communicate with a base

station it has to tune itself to this base stations frequency. Since the mobile agents

are movable, they may be in range of different base stations at the same time. To

avoid interference must be a base station in every area with a frequency that is not

used by any other base station in the range. A trivial solution would be to assign n

different frequencies for n different base stations, however using many frequencies is
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1 Introduction

expensive, since there is only a limited amount of possible frequencies for wireless data

transfers. Thus a scheme that uses as little frequencies as possible is preferable. The

conflict-free chromatic number mimimizes this scheme. To get there, most approaches

rely on unique-maximum colorings, because the additional structure of ordered colors

makes it easier to argue in proofs. In this thesis we will give bounds for both colorings’

chromatic numbers, that is the maximum number x of colors for which there exists a

graph that has conlict-free/unique-maximum chromatic number x and the mimimum

number y for which we know that all plane graphs have conlict-free/unique-maximum

chromatic number at most y.

In the second part of the thesis we will take a quick look into weak-parity colorings,

which are colorings such that for every face we have a color that appears an odd number

of times on that face. Results for this type of coloring are directly implied by our results

about conflict-free colorings. In the last section we give a overview about other types

of face restricted vertex-colorings and the most important results, that is based on a

survey of Czap and Jendrol [21].
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2 Preliminaries

2 Preliminaries

In this chapter we introduce all basic notations and definitions concerning graphs which

are used throughout the thesis. For this thesis, we are sticking to the definitions and

notations of the book "Graph Theory" by R. Diestel [23] with some minor additions, if

necessary.

Therefore, a graph is always simple, undirected, and finite unless specifially mentioned

otherwise. I.e., a graph is an ordered pair G = (V,E) where V is a finite set of so called

vertices and E ⊂
(
V
2

)
a set of unordered pairs of elements of V, called edges. For

simplicity, an edge {x, y} will often be abbreviated by xy. The notation V (G) will refer

to the vertex set of the graph G. The order of the graph G is the cardinality of the set

V (G). Analogously, E(G) will refer to the graph’s edge set. The number of edges in

E(G) is the size of the graph G. Graphs can be depicted in diagrammatic form as a set

of dots for the vertices, joined by lines or curves for the edges.

The union G̃ = G ∪ G′ of two graphs G = (V,E), G′ = (V ′, E ′) is defined as G̃ :=

(V ∪ V ′, E ∪ E ′). The union is called disjoint, if the vertex sets V , V ′ are disjoint.

We define G′ = (V ′, E ′) to be a subgraph of a given graph G = (V,E) if V ′ ⊂ V and

E ′ ⊂ E. This subgraph relation will be denoted as G′ ⊂ G, we say that G′ is contained

in G. If G′ is a subgraph of G on the vertex set V ′ and G′ contains all edges xy ∈ E
with x, y ∈ V ′, then G′ is an induced subgraph, denoted by G′ = G[V ′]. A subgraph G′

is maximally connected if it is connected, but G[V ′ ∪ {v}] for every v ∈ V \ V ′ is not.
If {u, v} ∈ E(G) these two vertices share an edge or are joined by an edge and are

said to be adjacent or neighbours. For a given v ∈ V (G) the set of all its neighbours

is denoted by N(v). For a fixed v this implies that v /∈ N(v), i.e. v is no neighbour of

itself. The closed neighbourhood N [v] is N(v)∪ {v}. If v ∈ e for a vertex v ∈ V and an

edge e ∈ E then v is incident to e. For and edge e = xy the two vertices x, y incident in

e are called its endpoints or ends. If a vertex v is deleted from V , all its incident edges

are removed from E as well.

The degree of a vertex v ∈ V (G) is the number of edges that end in v and is denoted

by deg(v). For simple graphs, the degree of v is the size of its neighbourhood N(v). The

maximum degree of G is ∆(G) := max{deg(v)|v ∈ V (G)}. Analogously, the minimum
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2 Preliminaries

degree of G is δ(G) := min{deg(v)|v ∈ V (G)}. The average degree d(G) of a graph

is the sum of all vertex degrees divided by the size of V . A vertex is called isolated if

it has degree 0. If all vertices of a given graph have the same degree k, the graph is

called k-regular or just regular. A set of vertices in which all vertices are pairwise not

adjacent is called an independent set. A vertex of degree d is called a d-vertex and a

≥ d-vertex is a vertex of degree at least d.

We will also give an informal definition of planarity, the formal approach can be found

in R. Diestel’s "Graph Theory" [23]. A graph G is planar if it can be embedded in the

plane, i.e. it can be drawn on the plane in such a way that its edges intersect only at

their endpoints. Such a drawing is called a plane graph or planar embedding of the

graph G. We define a face f of G to be the connected component of the plane after

removing the drawing of G. The set of vertices v adjacent to f in the plane, denoted

by V (f), is called the border of f . The set of edges adjacent to f is denoted by E(f).

We say d(f) = k if |E(f)| = k. If |E(f)| = k we call f a k-face, if |E(f)| ≥ k f

is a ≥ k-face. The vertices contained in the infinite connected component bound the

outerface. The set of all faces f of G will be denoted as F (G) and may be abbreviated

to F if the context allows. Two distinct faces f and g are adjacent if E(g) ∩ E(f) 6= ∅.
A graph G is called maximally planar if it is planar but adding any edge, that was

not an edge of G, would destroy that property. All faces are then bounded by three

edges, explaining the alternative term plane triangulation.

If there exists a face f such that any vertex of G is incident to that face, G is

outerplanar.

A graph G on n vertices is called complete, complete graph or Kn if any two different

vertices are adjacent. The K3 is called triangle. If the vertex set of a graph can be

partitioned in two non-empty sets A and B, such that A and B induce an independent

set, the graph is called bipartite. Kn,m denotes the complete bipartite graph with

independent sets A and B of sizes n and m, where every vertex in A is adjacent to every

vertex in B.

A walk is a sequence v0, e1, v1, . . . , vk of vertices vi and edges ei such that for 1 ≤ i ≤ k

the edge ei has endpoints vi−1 and vi. The length of a walk is its number of edges.

A path is a graph Pk = (V,E) with V = {vo, ..., vk}, vi 6= vj for i 6= j and i, j = 0, ..., k,
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2 Preliminaries

E = {v0v1, v1v2, ..., vk−1vk} where k indicates the length of the path, i.e. the number

of edges. A path on k vertices is called a k-path. The vertices v0 and vk are linked or

connected by P and called the endpoints or ends of P.

A cycle C is a formed by a path and an extra vertex vk+1 that is adjacent only to vo

and vk. I.e., C = ({vo, ..., vk} ∪ {vk+1}, {v0v1, v1v2, ..., vk−1vk} ∪ {vkvk+1, vk+1v0}). The

length of a cycle is the number of its edges, a k-cycle is a cycle on k vertices.

A graph G is connected if any two vertices in G are linked by a path. A vertex that

disconnects the graph upon removal is called a cut vertex. A graph G on at least k + 1

vertices is k-connected for k ∈ N if, after the removal of any k− 1 vertices, the graph is

still connected. A connected component of a graph is a maximal connected subgraph.

A separating cycle of a given graph G with k connected components is a cycle in G,

such that G− C has more than k connected components.

A graph is acyclic if it contains no cycle. An acyclic graph is called a forest. A tree

is a connected forest. Every vertex of degree one in a forest is a leaf .

Let C be an arbitrary set of unit disks in the Euclidean plane. The unit disc graph

of C is constructed by associating a vertex with every unit disk in C and joining two

vertices by an edge if the corresponding unit disks overlap.

A graph G′ is a minor of G if there exists a partition Px1 , ..., Px|V (G′)|
of a subset

S ⊂ V (G) such that Pxi
6= ∅, G[Pxi

] is connected for every i ∈ 1, ..., |V (G′)| and G

contains an edge between two vertices in Px and Py if xy ∈ E(G′).

A coloring of a graph G with k colors is a map c : V (G) −→ {0, ..., k − 1}, such that

for any vertex v ∈ V (G), c(v) gives its color. The set of all vertices of the same color

forms a color class. A proper coloring is a coloring in which each color class induces an

independent set. The chromatic number χ(G) is the minimum number of colors such

that G can be colored properly with that many colors. If the coloring is not proper, it

is called improper.

Given a graph G a set L(v) of colors assigned for each vertex v, a list coloring is a

function π : v ∈ V (G) −→ L(v) that maps every vertex v to a color c ∈ L(v) of its

associated list. Again the list-coloring is called proper if no two adjacent vertices receive

the same color and improper or non-proper otherwise. A graph is said to be k-choosable

if it can be list-colored from the lists, where each list has k colors. For convenience of
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2 Preliminaries

notation we deviate from standart notations for the list chromatic number denoted

by χ′(G) in this thesis. The list chromatic number is the minimum k, such that G is

k-choosable.

We define a hypergraph H as a pair H = (V,E) where V is a set of vertices and E is

a set of non-empty subsets of V of size at least two called hyperedges. A hypergraph is

k-uniform if all its hyperedges contain k vertices each, so they have size k.

A edge e in a hypergraph H is colored properly if there are two vertices x1 and x2 in

e of different color. The hypergraph chromatic number χ(H) is the minimum number

of colors such that every hyperedge e ∈ E(H) is colored properly.

The following definitions, mentioned in Jungic "Coloring of plane graphs with no

rainbow faces" [49], might be useful as well, since many of the main results ([32], [72],

[18]) have their colorings respecting faces defined for hypergraphs induced by the faces.

In this thesis we will give alternate definitions of the colorings directly for plane graphs

and their faces.

Definition 2.1. The face-hypergraph of a plane graph G is the hypergraph with the vertex

set V (G) and the edge set {V (f)|f ∈ F (G)}.

Definition 2.2. A planar hypergraph is a hypergraph whose bipartite incidence graph

between the vertices and the edges is planar.

Equivalently, there is a plane graph G such that for every hyperedge E there is a face

in the graph G whose vertex set is E (but there might be faces with no corresponding

hyperedges). By those two definitions one can easily prove that every face hypergraph

is a planar hypergraph.

Theorem 2.3. Every face hypergraph is a planar hypergraph.

Proof. Let G = (V,E) be a plane graph with n faces. Add one vertex f̃i into every face

fi for i = 1, ..., n. Also add a set of edges F by connecting f̃i to all vertices incident

to fi without crossing any edges, to get G̃ = (V ∪ {f̃1, ..., f̃n}, E ∪ F ). Note that G̃

is still a simple plane graph. The induced subgraph G̃[{f̃1, ..., f̃n}] is an empty graph,

since an edge connecting f̃i to f̃j would have to intersect an edge of fi. Thus the graph
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2 Preliminaries

Figure 1: Constructing the bipartite planar face incidence graph. The original graph G
in black, the vertices added for each face in blue.

G̃ \ E = ((V ∪ {f̃1, ..., f̃n}, F ) is the bipartite planar face incidence graph of G, hence

the face hypergraph of G is a planar hypergraph. See Figure 1.

The definitions we use in this thesis for weak-parity, conflict-free and unique-maximum

colorings are the following. Instead of resorting to hypergraphs and hyperedges, we

define some properties of the coloring regarding the faces of a plane graph. Note that

all three types of colorings do not imply a proper coloring of a plane graph, but are

also not in conflict with proper colorings. Thus we can demand the colorings to be

additionally proper, which yields proper weak-parity, proper conflict-free and proper

unique-maximum colorings.

Definition 2.4. A coloring of a plane graph G is weak-parity (WP) if, for every face

f ∈ F (G) there is a color c with an odd number of vertices of f colored c. The WP

chromatic number of G is the minimum k for which G has a WP k-coloring, denoted

χwp(G). Similarily, if the WP coloring is proper, the proper weak-parity (PWP) chro-

matic number is denoted by χpwp(G).

Definition 2.5. A coloring of a plane graph G is conflict-free (CF), if for every face

f ∈ F (G), there is a color that occurs exactly once on the vertices of f . The CF

chromatic number of G is the minimum k for which G has a CF k-coloring, denoted

χcf (G). Similarily, if the CF coloring is proper, the proper conflict-free (PCF) chromatic

number is denoted by χpcf (G).

Definition 2.6. A coloring of a plane graph G with colors ordered {1, 2, . . . , k} is unique-
maximum (UM), if for every face f ∈ F (G), the maximum color on the vertices of f
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2 Preliminaries

is unique. The UM chromatic number of G is the minimum k for which G has a UM

k-coloring. Similarily, if the UM coloring is proper, the proper unique-maximum (PUM)

chromatic number is denoted by χpum(G).

We will also look at list versions of those colorings.

Definition 2.7. A plane graph G is k-list-WP-colorable if for every list assignment L,

where every vertex v gets assigned a list of size k of choosable colors L(v), there is a WP-

coloring of G using only colors from L(v) for every v ∈ V (G). The list-WP-chromatic

number χ′wp(G) is the minimum k for which G is k-list-WP-colorable. Similarily, if the

list-WP-coloring is proper, the proper weak-parity list-chromatic number is denoted by

χ′pwp(G).

Definition 2.8. A plane graph G is k-list-CF-colorable if for every list assignment L,

where every vertex v gets assigned a list of size k of choosable colors L(v), there is a CF-

coloring of G using only colors from L(v) for every v ∈ V (G). The list-CF-chromatic

number χ′cf (G) is the minimum k for which G is k-list-CF-colorable. Similarily, if the

list-CF-coloring is proper, the proper conflict-free list-chromatic number is denoted by

χ′pcf (G).

Definition 2.9. A plane graph G is k-list-UM-colorable if for every list assignment L,

where every vertex v gets assigned a list of size k of choosable colors L(v), there is a UM-

coloring of G using only colors from L(v) for every v ∈ V (G). The list-UM-chromatic

number χ′um(G) is the minimum k for which G is k-list-UM-colorable. Similarily, if the

list-UM-coloring is proper, the proper unique-maximum list-chromatic number is denoted

by χ′pum(G).
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3 Conflict-free and Unique-maximum colorings of plane graphs

3 Conflict-free and Unique-maximum colorings of

plane graphs

In this section we will look into conflict-free and unique-maximum vertex colorings lat-

est researched by I. Fabrici and F. Göring [32] in "Unique-maximum coloring of plane

graphs", which are colorings, such that every face has a unique vertex. We will give

improvements of their results by A. Wendland [72] as well as generalize some results for

all planar graphs.

We will give all the proofs for this chapter in this thesis. The theorems and proofs

might be slightly altered from the original to fit our definitions. In some places additional

explanations or figures were added, but we still refer each Theorem to the paper of its

first occurence.

It is easy to see, that any unique-maximum coloring of a graph G is a conflict-free

coloring of G, since the vertex with the highest color for any face will always be a unique

vetex. This applies for the proper and improper case. To get some clarity, we structured

the results of this chapter in Table 1. Note that if the lower bound on the maximum

chromatic number of a coloring of type i is x we know the existence of a plane graph G

with χi(G) = x, whereas for an upper bound to be y we have to know that for all plane

graphs G, χi(G) ≤ y. If the two bounds match, we have found a sharp bound.

Coloring i Lower bound Upper bound
CF 3 3
UM 3 3
PCF 4 4
PUM 4 5

Table 1: Table constraining the maximum chromatic number for plane graphs χi =
max{χi(G) : G planar} of the mentioned colorings.

To show the relation between our different types of colorings in this chapter we have

this Proposition which is directly implied by the definitions.

Proposition 3.1. If G is a plane graph we have

1. χcf (G) ≤ χum(G),
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3 Conflict-free and Unique-maximum colorings of plane graphs

2. χ(G) ≤ χpcf (G) ≤ χpum(G).

The lower bounds are straightforward. We are going to construct two graphs that

need enough colors to imply the lower bounds for each coloring type.

Lemma 3.2. There is a plane graph G with χcf (G) = 3

Proof. Let G be two separate triangles t1, t2 in the plane like in Figure 2. Let f be their

common face. To color t1 conflict free, one vertex needs to have a distinct color. To

color t2 and f conflict free, one vertex needs to have a distinct color different from the

colors of t1.

t1 t2

f

Figure 2: Two triangles in the plane colored CF.

By Proposition 3.1 this implies the lower bound for χum as well. The lower bound for

the PCF and PUM colorings comes from the property of being proper. Again we show

it for χpcf and χpum is implied by Proposition 3.1.

Lemma 3.3. There is a plane graph G with χpcf (G) = 4.

Proof. Let G be a plane embedding of K4. We need four colors to color G properly.

Since every face is a triangle the coloring is conflict-free. Consider Figure 3.

Now we continue with the upper bounds. We start with some simple results for

subgroups of plane graphs, especially for triangulations. Contrary to standard proper

colorings, coloring a graph G conflict-free or unique-maximum may also get easier by

adding additional edges, since the size of the individual faces decreases. Thus the size of

the sets of vertices which need to have one special vertex decreases. Thus we can prove

the following theorem for planar triangulations.
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Figure 3: K4 colored PCF.

Theorem 3.4. If a graph G is a plane triangulation we have χcf (G) = 2.

Proof. Let G be a triangulation. Since G is plane the four color theorem implies that we

can properly color G, using four colors a, b, c, d. Now recolor G assigning red to vertices

colored a and b and blue to vertices colored c and d. Since every face of G is a triangle,

it was originally colored in 3 different colors, thus cannot be completely red or blue.

This implies χcf ≤ 2. Note that the smallest triangulation contains at least one triangle,

which gives us χcf ≥ 2 .

a

b

a
b

c

c

d

Figure 4: Transforming a proper coloring with four colors into a conflict-free coloring
using two colors.

In the same way one can prove a similar although weaker result for UM colored

triangulations.

Theorem 3.5. If a graph G is a triangulation we have χum(G) ≤ 3.

Proof. Let G be a triangulation. Since G is planar the four color theorem implies that

we can properly color G, using four colors a, b, c, d. Now recolor G assigning 1 to vertices
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3 Conflict-free and Unique-maximum colorings of plane graphs

colored a and b, 2 to vertices colored c and 3 to vertices colored d. Since every face of G

is a triangle, it was originally colored in 3 different colors. Thus in the recoloring every

face contains a single vertex colored 2 or 3 which is the UM vertex.

Göring and Fabrici [32] showed that this result holds true for any plane graph. There-

fore they needed the following Lemma, which makes a statment about a possible three

color coloring of plane graphs that has certain properties. The idea for the proof is to

do a induction on the number of vertices of a plane graph G. A case distinction divides

the argument mainly over the connectivity of G into subcases, which are further split

up to cover all plane graphs.

Lemma 3.6 (Göring and Fabrici [32]). Let G be a plane graph, let xy ∈ E(G) be a

selected edge of G incident with the outer face, and let c ∈ {black, blue}. There is a

3-coloring of G with colors black, blue and red such that

1. vertex x has color c,

2. vertex y is black,

3. each edge is incident to at most one blue vertex,

4. no vertex incident to the outer face is red,

5. each inner face is incident to at most one red vertex, and

6. each inner face that is not incident to a red vertex is incident with exactly one blue

vertex,

Proof. We are goning to prove this theorem by induction on the number of vertices. Let

G be a plane graph, let xy ∈ E(G) be the selected edge of G incident with the outer

face f and let c ∈ {blue, black}. Let x be colored c and y be colored black.

1. G is a forest. If f is the only face of G, G is a forest. The precoloring of x and y

can be extended to the required coloring of G by coloring all other vertices black.

2. G is disconnected. IfG is disconnected, the edge xy is contained in one connected

component. Let G1 be this component and G2 = G−G1. If G1 and G2 are both incident
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3 Conflict-free and Unique-maximum colorings of plane graphs

in the outer face, we apply the induction hypothesis to color G1 with the selected edge

xy. If G2 contains no edge we color all vertices of G2 black. If G2 is not edgeless,

pick x2y2 as an edge on the outer face. We color the graph G2 with the selected edge

x2y2 by induction hypothesis whereas c2 = black. Together both colorings fulfill the

requirements. If G2 is not incident in the outer face of G, G2 is contained in an inner

face f of G1. We connect G1 and G2 to create G̃ by adding an edge between an arbitrary

vertex v1 ∈ V (f) and a vertex v2 incident in the outer face of the induced subgraph G2.

We continue the proof with the graph G̃. Note that since G1 and G2 were disconnected,

the faces of G̃ are the same as the faces of G, thus a desired coloring of G̃ is also a

desired coloring of G.

From now on we can assume that G is connected and has at least two faces. That

implies G has a cycle, so G has at least three vertices and three edges.

3. Set of vertices U that are not incident to inner faces of G. Now we look

at graphs that have vertices that are not incident to inner faces of G. Let U 6= ∅ be the

set of vertices incident with no inner face of G. Note that for every u ∈ U every edge

incident to u is a bridge of G. See Figure 5 for an example.

G1 G2

u1

u2

Figure 5: Two vertices u1 and u2 in the set U connected to the parts G1 and G2 of G.

3.1. There exists u ∈ U \ {x,y}. We apply the induction hypothesis to color

G− u. Then we color u black. Since the faces of G can only get bigger by removing u,

the requirements for the induction still hold.

3.2.1. x ∈ U and d(x) = 1. Then d(y) ≥ 2 since G is connected and has at least

18



3 Conflict-free and Unique-maximum colorings of plane graphs

three vertices. We choose x′ ∈ N(y) different from x and incident with the outer face

f . By induction hypothesis we color G − x with the selected edge x′y and c′ = black.

Together with the vertex x colored c we have the required coloring.

3.2.2. y ∈ U and d(y) = 1. Then d(x) ≥ 2. Choose y′ ∈ N(x) different from y and

incident with the outer face f . By induction hypothesis we color G−y with the selected

edge xy′ whereas y′ is colored black. Together with the vertex y colored black we have

the required coloring.

Thus we can assume in the following cases that both x and y have degree at least two.

3.3. y ∈ U and d(y) ≥ 2. We apply the induction hypothesis to color G − y by

selecting an edge xy′ incident with the outer face of G− y. Finally we color y black.

3.4. U = {x}. Let y1, . . . , yk be the neighbours of x in G. Note that y is one of them.

Clearly all these neighbours have degree at least two, otherwise they would be in U . For

i ∈ {1, . . . , k} let Gi be the component of G \ x containing yi, let yixi be an edge of Gi

incident with the outer face of Gi which is f , and let ci = black. We apply the induction

hypothesis to every graph Gi with the selected edge xiyi and the color ci. Together with

the vertex x colored c we obtain the required coloring.

4. The set U is empty. Now we have looked at all possible cases for U 6= ∅. Hence
we may assume that U = ∅, that means each vertex of G is incident with an inner face

of G. We define B = G[V (f)] to be the graph induced by the vertices incident with the

outer face f in G.

4.1. B contains a cut vertex of B. B contains a cut-vertex x2 of B, that is a

vertex whose removal will disconnect the graph. We split the graph G on x2 into two

subgraphs G1 and G2 so that xy ∈ E(G1). Strictly speaking, let M be the component

of G \ x2 containing x or y. Note that either x and y belong to the same component of

G \ x2 or x2 ∈ {x, y}. Let G1 = G[V (M)∪ {x2}] and G2 = G[V (G) \ V (M)]. Note that

x2 is shared by both subgraphs G1 and G2. Moreover let y2 be a neighbour of x2 on the
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3 Conflict-free and Unique-maximum colorings of plane graphs

outer face of G2. Consider Figure 6. Now we color G1 by the induction hypothesis with

the selected edge xy and the color c, we call this coloring ϕ1. Then we color G2 with the

selected edge x2y2 and the color c2 = ϕ(x2). This is possible by induction hypothesis

since x2 is incident with the outer face of G1 thus ϕ1(x2) ∈ {black, blue}. Since the

colorings of G1 and G2 match in x2 and both subgraphs share the same outer face, the

resulting coloring has the desired properties.

x2 x2 x2

y2 y2

x

y

x

y
G

G1 G2

Figure 6: The graph G is split into the two induced subgraphs G1 and G2 which both
contain the vertex x2.

4.2. B contains an inner edge x2y2. B contains an inner edge x2y2, that means

an edge not incident with f . Thus {x2, y2} is a 2-vertex-cut of G. We split the graph G

on x2y2 into two subgraphs G1 and G2 so that xy ∈ E(G1). More formally, analogously

to Case 4.1, let M be the component of G \ {x2, y2} containing x or y. Define G1 =

G[V (M) ∪ {x2, y2}] and G2 = G[V (G) \ V (M)]. Note that x2 and y2 are shared by G1

and G2, this can be seen in Figure 7. By induction hypothesis, there is a desired coloring

of G1 with the selected edge xy and the color c, this coloring is ϕ1. Since both x2 and y2

are on the outer face of G1 neither of them is colored red in ϕ1. Since they are adjacent

to each other, only one can be blue, thus one has to be black. Without loss of generality

we say y2 is black, otherwise we swap them. Now we apply the induction hypothesis to

G2 with the selected edge x2y2 and c2 = ϕ1(x2). The colorings match up and we get the

desired coloring of G.

Since we treated the cases where B contains a cut vertex or an inner edge, now we

may assume that B is a cycle. Since every face is bounded by at least three vertices we

also have another vertex v in B that is a neighbour of y different from x.

4.3. G = B. We color vertex x by c, vertex v black or blue, but different from x and
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G
x2 x2 x2

y2 y2 y2

x

y

x

y

G1 G2

Figure 7: The graph G is split into the two induced subgraphs G1 and G2 which both
contain the vertices x2 and y2.

all other vertices (inclusively y) black.

4.4. G 6= B. Let h be the inner face of G incident with yv. Because G[V (h)] 6= B,

h has a vertex u /∈ V (B). We apply the induction hypothesis to G \ {u, yv} obtained

from G by deleting the vertex u and the edge yv, see Figure 8. To obtain the required

coloring of G we color u in red. The vertices of the outer face of G \ {u, yv} are exactly

the vertices incident with f (in G) together with the vertices incident with the faces

containing vertex u (in G). Obviously, none of them is colored red and therefore f is

incident with no red vertex. Any inner face of G is either an inner face of G \ {u, yv}
ahd thus colored correctly by induction hypothesis, or it is incident with the red vertex

u, which is its unique red vertex. Furthermore there is no edge in G inciddent with two

blue vertices, since every edge of G is either an edge of G \ {u, yv} and thus colored

correctly by induction hypothesis, or it is incident with the red vertex u, or it is the edge

yv, where y is black.

x x

y y

v v uu

G G \ {u, yv}

Figure 8: The graph G with the vertex u colored red and the graph G \ {u, yv}.

Once this Lemma is proven, we can deduce a UM-coloring result for all plane graphs.
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3 Conflict-free and Unique-maximum colorings of plane graphs

If we assign red = 3, blue = 2 and black = 1 the following Theorem yields our upper

bound for UM-colorings of plane graphs.

Theorem 3.7 (Fabrici and Göring [32]). Every plane graph has a 3-coloring with colors

black, blue and red such that

1. each face is incident with at most one red vertex,

2. each face that is not incident with a red vertex is incident with exactly one blue

vertex, and

3. there are no two blue adjacent vertices.

Proof. Let G be a plane graph. Choose a vertex z ∈ V (G) incident in the outer face

and look at the graph G′ = G− z. If G′ has no edges, G is a forest. Thus we can color

all vertices of G′ black and color z red. Otherwise G′ has an edge xy on the outer face.

We color x and y black and apply Lemma 3.6 on G′, whereas the selected edge is xy and

c = black. This yields the desired coloring for G′. We take this coloring for G. Note that

every face f of G is either an inner face of G′ and thus colored correctly by Lemma 3.6,

or is incident with the vertex z. Since the vertices on the outer face of G′ are colored

black or blue, we can color z red to get the desired coloring.

To get a bound for χpum = max{χpum(G) : G planar} the approach is to take the

coloring from Theorem 3.7 and color the graph induced by the black vertices using the

Four Color Theorem in four new colors {1, 2, 3, 4}. The induced subgraphs of the red

and blue vertices are both empty according to the properties 1 and 3 of Theorem 3.7.

This implies G with the recolored black vertices will remain UM, if we assign blue = 5

and red = 6, but will also be proper. All in all this process shows that χpum ≤ 6.

Alex Wendland showed that χpum ≤ 5 in his paper "Colouring of plane graphs with

unique maximal colours on faces" [72]. This is done by constructing a stronger version of

Theorem 3.6 which allows to color the graph induced by the black vertices in only three

colors. Since Wendland uses a different definition for planar graphs we can shorten his

proof of said Theorem to fit our definitions. It should be noted that the original Theorem

is stronger, because it allows for parallel edges that form no 2-faces.
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3 Conflict-free and Unique-maximum colorings of plane graphs

Lemma 3.8 (Wendland [72]). Let G be a plane graph let xy ∈ E(G) be an edge of G

incident with the outer face, and let c ∈ {black, blue}. There is a non-proper 3-vertex-

coloring of G with colors red, blue and black such that

1. vertex x has color c,

2. vertex y is black,

3. each edge is incident with at most one blue vertex,

4. no vertex incident with the outer face is red,

5. each inner face is incident with at most one red vertex,

6. each inner face that is not incident with a red vertex is incident with exactly one

blue vertex, and

7. each triangle contains at least one vertex that is not black.

Proof. We prove this by an induction on the number of vertices. Let xy ∈ E(G) be an

edge of G incident with the outer face and c ∈ {black, blue}. If G has no separating

cycles of length three, Lemma 3.6 yields the statement, since every triangle must bound

a face, unless the outer face is a 3-face. If the outer face is a 3-face and c = blue Lemma

3.6 also yields the statement. If c = black we use x̃ to be the vertex of the outer 3-face

different from x and y. Let c(x̃) = blue and Lemma 3.6 with x̃y instead of xy gives the

statement. Note that the vertices that were originally x and y must be black since G

has no edge with two blue end vertices.

Now assume that G has separating cycles of length three. Let T be an innermost such

cycle, i.e. there is no seperating triangle inside T. The vertices of T will be called t1,t2

and t3. Let G1 be the subgraph strictly contained outside T and G2 be the subgraph

strictly contained inside T . See Figure 9 for the situation.

Since T is a separating triangle, G1 and G2 are not empty. We apply the induction

assumption on the subgraph induced by the vertices in G1 ∪ T with xy and c to get a
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G2

T

t1

t2 t3

G1

Figure 9: The graph G is split into the graphs G1 and G2 by the separating triangle T .

3-coloring of G1 ∪ T with the desired properties. As T bounds an inner face in G1 ∪ T ,
some of its vertices must be coloured with blue or red. Thus we have 3 possibilities: one

vertex is red, one blue and one black, one vertex is red and two are black, or one vertex

is blue and two are black. We now consider those three cases.

One vertex red, one blue, one black. Without loss of generality assume t1 is

red, t2 is blue and t3 is black. Apply the inductive assumption on the graph induced by

V (G2) ∪ {t2, t3} with t2 as x to be coloured blue, which is the colour c, and t3 as y to

be black. The 3-colorings on G1 ∪ T and the graph induced by V (G2) ∪ {t2, t3} match

up and give a coloring of G with the desired properties.

Two black vertices and one red. Assume t1 is red. The inductive assumption is

applied on the graph induced by V (G2) ∪ {t2, t3} again with t2t3 being xy to be both

colored black. The 3-colorings on G1 ∪ T and the graph induced by V (G2) ∪ {t2, t3}
match up on t2t3 and give us a 3-coloring as we want it.

Two black vertices and one blue. Let t1 be blue. Apply the inductive assumption

on the graph G2 ∪ T with t1 as x to be colored blue and t2 as y to be black. Since t3

cannot be colored blue, as it is connected to t1, and cannot be red, as it is on the outer

face, the 3-colorings on G1∪T and G2∪T match up and give us the required 3-coloring.

This stronger theorem was used to prove that χum(G) ≤ 5. Again, since Wendland

uses slightly different definitions for plane graphs, we can shorten his proof of the fol-
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3 Conflict-free and Unique-maximum colorings of plane graphs

lowing theorem.

Theorem 3.9 (Wendland [72]). If G is a plane graph then χum(G) ≤ 5.

Proof. Choose a vertex v ∈ V (G) incident in the outer face and apply Lemma 3.8 to the

graph G−v. Then color v red to get a 3-coloring. Note that each face has either exactly

one red vertex, or no red vertex and exactly one blue vertex. Moreover, every triangle

contains at least one red or blue vertex. Take the induced subgraph H of the black

vertices. Because of property 7 in the Lemma, H is triangle free. Thus by Grötzsch

Theorem [35], there exists a proper 3-coloring of it using {1, 2, 3} Then assign blue

vertices the color 4 and red vertices the color 5. The constructed 5-coloring is proper

and has a unique maximal colour on each face from the construction.

The last result of this chapter is about proper conflict-free colorings again. Here we

show that a stronger version of the Four Color Theorem regarding faces holds true.

That is any plane graph can be colored in 4 colors such that the coloring proper and

additionaly every face contains a vertex of unique color.

Theorem 3.10. Let G be a plane graph, then χpcf (G) ≤ 4.

Proof. Let G be a plane graph. For every 3-face any proper coloring of G yields a unique

vertex, since all vertices in a 3-face are adjacent. For every face f ∈ F (G) with |V (f)| ≥ 4

pick a arbitrary vertex v ∈ V (f) and connect it to all vertices ui ∈ V (f)\N [v] by adding

edges vui into the face f . We color the resulting graph G̃ using the Four Color Theorem.

This coloring of G̃ is a proper coloring of G and for every f ∈ F (G) with |V (f)| ≥ 4 a

vertex v will have unique color since it was connected to all vertices ui ∈ V (f) \ {v} in
G̃.

Note that in the proof of Theorem 3.10 we can not choose what color our selected

vertices v get, thus we do not necessarily obtain a PUM-coloring, but for every face f we

have some freedom in choosing which vertex v of f we pick to be unique. This is not in

conflict with a conjecture of Fabrici and Göring [32].

Conjecture 3.11. If G is a plane graph, then χpum(G) ≤ 4.
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3 Conflict-free and Unique-maximum colorings of plane graphs

Since our bounds for the maximum PCF-chromatic number are sharp and match the

bounds of the standart chromatic number, one may ask the question if the requirement

for a proper coloring to be conflict-free raises the chromatic number of plane graphs at

all. One might ask as well if the standart chromatic number is generally bigger than

the CF-chromatic number. Figure 10 proves both assumptions wrong, since it gives an

example of a plane graph G where 2 = χ(G) < χcf (G) = 3 = χpcf (G).

Figure 10: A graph G where χ(G) < χcf (G) = χpcf (G).

Since our lower bound for the PCF-chromatic number arises from the fact that there

are planar graphs that need four colors to be colored properly, we ask what happens

for triangle free plane graphs, since by Grötzschs Theorem we know that every triangle

free plane graph is properly 3-colorable. Because the Dodecahedron is PCF-colorable

in 3 colors (see Figure 11) we raise the question if every triangle free plane graph is

PCF-colorable in 3 colors.

Figure 11: The Dodecahedron colored PCF using three colors.

The answer to that question is no, as a simple example proves. It is known that a odd

cycle needs 3 colors to be colored properly. If we just put two such cycles in a plane,
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they both share the outer face, thus if they use the same three colors each, there will

not be a unique vertex on the outer face 12. Note that this graph is outerplanar as well.

Figure 12: A triangle free graph G consisting of two C5 with χ(G) = 3 and χpcf (G) = 4.
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3 Conflict-free and Unique-maximum colorings of plane graphs

3.1 List colorings

In this section we will present bounds for the chromatic number of the list-coloring

variant of proper unique-maximum and proper conflict-free vertex colorings. The upper

bound for the proper unique-maximum chromatic number is due to Wendland [72]. Since

he uses a different definition of planar graphs we give a slightly different version of his

proof here that fits our definitions, as well as some additional explanations. The other

bounds will be proven in this section as well. Table 2 summarizes the results of this

chapter.

Recall that a lower bound x for the chromatic number in a coloring of type i means

there exists a plane graph G with χ′i(G) = x , whereas an upper bound y means that

for all plane graphs H we have χ′i(H) ≤ y.

Coloring i Lower bound Upper bound
PCF 5 5
PUM 5 7

Table 2: Table constraining the maximum chromatic number for plane graphs χ′i =
max{χ′i(G) : G planar} of the mentioned colorings.

We start with an obvious proposition which is directly implied by the definitions of

PCF and PUM list-colorings.

Proposition 3.12. For any plane graph G we have χ′(G) ≤ χ′pcf (G) ≤ χ′pum(G).

Proof. Any PCF or PUM list-coloring of a graph G is by definition a proper coloring.

Any PUM list-coloring is by definition a PCF list-coloring.

This gives us easy lower bounds for the PCF and PUM list-chromatic number.

Corollary 3.13. If G is a plane graph then χ′pcf (G) ≥ 5 and χ′pum(G) ≥ 5.

Proof. By the construction of Voigt [70] we know there exists a plane graph G with

χ′(G) = 5. By Lemma 3.12 this implies χ′pcf (G) ≥ 5 and χ′pum(G) ≥ 5.

The following Theorem yields the upper bound for χ′pcf of plane graphs, which is best

possible since it matches the lower bound. Thus we know there exists a plane graph G

that has χ′pcf = 5 and for all plane graphs H we have χ′pcf (H) ≤ 5.
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Theorem 3.14. Let G be a plane graph, then χ′pcf (G) ≤ 5.

Proof. Let G be a plane graph with list assignment L, |L(v)| = 5 for every v ∈ V (G).

For every 3-face any proper coloring according to L of G yields a unique vertex, since

all vertices in a 3-face are pairwise adjacent. For every face f ∈ F (G) with |f | ≥ 4 pick

an arbitrary vertex v ∈ f and connect it to all vertices ui ∈ V (f)\N [v] by adding edges

vui into the face f , resulting in a graph G̃. By the result of Thomassen [68] we know G̃

is 5-list-colorable, we take such a coloring according to L. This coloring of G̃ is a proper

coloring of G and for every f ∈ F (G) with |f | ≥ 4 a vertex v will have unique color

since it was connected to all vertices ui ∈ V (f) \ {v} in G̃.

The last bound in this chapter is the upper bound for the PUM-list-chromatic number.

This was originally proven by Wendland [72] in 2015. This proof is slightly changed to

fit our definitions, with some additional explanations. The idea is to prove the bound

by contraposition. We assume that there are plane graphs that can not be PUM-list-

colored with lists of size seven. Out of those we pick an extremal graph G by its number

of vertices and edges. Then we analize the properties of this extremal graph G. We

use those properties to generate a contradiction in the following discharging argument.

Thus such a extremal graph G can not exist, which implies Proposition 3.15.

Proposition 3.15 (Wendland [72]). If G is a plane graph then χ′pum(G) ≤ 7.

Now we will prove Proposition 3.15. We assume Proposition 3.15 is false and take G to

be an extremal counter example with a list assignment L with lists of size at least seven

for every vertex v ∈ V (G), such that G is not unique-maximum list-colorable. Whereas

a graph G is an extremal counter example if it is a counter example with mimimum

number of vertices and for that case maximal number of edges. First we discuss why we

can find a extremal counter example G if Proposition 3.15 is wrong.

Lemma 3.16 (Wendland [72]). Assuming Proposition 3.15 is false an extremal counter

example G exists.

Proof. As Theorem 3.15 is false a counter example exists, therefore we can partially

order the counter examples with respect to the criteria above. As the number of vertices
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is countable, we can find a set of extremal counter examples with minimum number of

vertices. In this set, with a fixed number of vertices the number of edges is bounded,

therefore we can pick a G with the maximum number of edges.

Now we will explore properties of a extremal counter example G with list coloring L.

Lemma 3.17 (Wendland [72]). Let G be an extremal counter example.

1. G is 2-connected.

2. For all vertices v ∈ V (G), if v is adjacent to k vertices and l faces of size at least

four then k + l ≥ 7.

3. Each vertex of G is a ≥ 4-vertex.

4. No two 3-faces share a 4-vertex.

Proof. 1. If G is disconnected, then it has different components G1 and G2. Pick a

vertex on the face shared by G1 and G2 for both G1 and G2 and add an edge between

the two. By the extremity of G, specifically the maximality in terms of edges as we are

not increasing the number of vertices, we can find an L-PUM-coloring. This coloring

would also be a L-PUM-coloring of the original graph.

Suppose G has a cut vertex v with a face f on two sides, let v1vv2 and v3vv4 be walks

on the boundary of face f, see Figure 13. Consider the graph H which is G with an

additional edge v1v2. By extremity of G, H has a L-PUM-coloring as H has more edges

than G. Since we only created a 3-face, and VG(f) = VH(f) this wouble be a proper

unique-maximum list-coloring of G.

v2

v4

v1

v3

v

ff
v1 v2

v3 v4

v

Figure 13: Configuration of Proposition 3.17
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2. Suppose G has a vertex v ∈ V (G) such that k + l ≤ 6 Let v1, . . . , vk be the

neighbours of v in the cyclic order. Remove v and add edges v1v2, . . . , vk−1vk and vkv1.

Note in G are no such edges, since the faces adjacent to v have size at least 4. By

extremity of G we can PUM-color the remaining graph from the lists L, as the graph

remaining has less vertices. Then we assign a color to v from its list that is not assigned

to its neighbours and that is not the maximal color on any of the incident faces. Since

there are at most k+ l such colors, there is a color in L(v) that can be assigned to v. On

the faces containing v, the maximal color of the face is either on the vertex that had the

maximal color in the modified graph or on v. Therefore G would have a L-PUM-coloring.

3. This follows from 2. as l ≤ k for any vertex.

4. Follows directly from 2. since a vertex adjacent to two 3-faces needs to have

d(v) ≥ 5 to fulfill k + l ≥ 7.

Now we look at a 4-face sharing an edge with a 3-face. We introduce three Lemmas

that will be helpful in the following discharging argument. Therefore we will use the

following notation. If f is a face, then we write c(f) to be the maximal colour of f under

the coloring c.

Lemma 3.18 (Wendland [72]). In an extremal counter-example G, no 3-face and 4-face

can share an edge joining two 4-vertices.

Proof. Assume otherwise, let G be a extremal counter example with such a configuration.

Let the 3-face be v1v2v3 and the 4-face v1v2v5v4 with v1 and v2 being 4-vertices. Let v7

be the remaining vertex connected to v1, f1 the face bounded partially by v3v1v7 and f2

the face partially bounded by v7v1v4. Let v6 be the remaining vertex connected to v2, f3

the face partially bounded by v5v2v6 and f4 the face partially bounded by v6v2v3. This

situation is shown in Figure 14.

Let H be the graph G \ {v1, v2} but with the additional edges v4v7, v7v3, v3v6 and

v6v5. Let f ′1 be the new face partially bounded by v3v7, f ′2 by v7v4, f ′3 by v5v6 and f ′4
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v6 v6 v5v5

v3 v3

v7 v7

v2

v1

f1 f ′
1

f ′
4f4

f3

f2 f ′
2

f ′
3

v4 v4

Figure 14: Configuration of Lemma 3.18 and reduction.

by v6v3. Then by the extremality of G, H has an L-coloring c, since it has less vertices.

As v4 and v5 are adjacent by symmetry we can assume c(v4) > c(v5). Color v2 from

L(v2) by a color different from c(v3), c(v4), c(v5), c(v6), c(f ′3) and c(f ′4); call this color

c(v2). Then color v1 from L(v1) by a color different from c(v2), c(v3), c(v4), c(v7), c(f ′1)

and c(f ′2). The resulting coloring is a L-UM-coloring. Indeed, the maximal color on the

face v1v2v5v4 is the color of either v1, v2 or v4. Therefore a L-UM-coloring of G exists

contradicting that G is a extremal counter example.

The proofs of Lemma 3.19 and Lemma 3.20 are similar.

Lemma 3.19 (Wendland [72]). In a extremal counter-example G, no 3-face and 4-face

can share an edge joining a 4-vertex and a 5-vertex incident to three 3-faces.

Proof. Let v1 be a 5-vertex and let its neighbours be v2, v3, v4, v5 and v6 in the cyclic

order with v1v2v3 being a 3-face. Let v1v2v7v6 be a 4-face and v2 a 4-vertex with v8 being

the neighbour of v2 different from v1, v3 and v7. Let f1 be the face partially bounded by

v7v2v8 and f2 by v8v2v3. Let f3 be the second ≥ 4-face adjacent to v1. Let vertices vk

and vk+1 be neigbours of v1 that are on face f3. One of these configurations is shown in

Figure 15.

Let H be the graph G\{v1, v2} with edges v6v8, v3v8 and vkvk+1 added. Let f ′1 be the

new face in H partially bounded by v7v8, f ′2 by v3v8 and f ′3 by vkvk+1. By the extremality
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Figure 15: Configuration of Lemma 3.19 and reduction.

of G there is a L-coloring c of H. As v6 and v7 are adjacent, they have different colors.

We get two possible cases:

Let c(v6) > c(v7). Color v2 by a color from L(v2) different from c(v3), c(v6), c(v7),

c(v8), c(f ′1) and c(f ′2). Call it c(v2). Color v1 in a color from L(v1) different from c(v2),

c(v3), c(v4), c(v5), c(v6) and c(f ′3). This is a L-UM-coloring as on the 4-face v1v2v7v8 the

maximal color is that of either v1, v2, or v6.

Let c(v7) > c(v6). Color v1 by a color from L(v1) different from c(v3), c(v4), c(v5),

c(v6), c(v7) and c(f ′3). Call it c(v1). Color v2 in a color from L(v2) different from c(v1),

c(v3), c(v7), c(v8), c(f ′1) and c(f ′2). This is a L-UM-coloring as on the 4-face v1v2v7v8 the

maximal color is that of either v1, v2, or v7.

Therefore G has a L-UM-coloring.

Lemma 3.20 (Wendland [72]). In a extremal counter-example G, no 3-face and 4-face

can share an edge joining a 4-vertex and a 6-vertex incident with five 3-faces.

Proof. Let v1 be a 6-vertex and let its neighbours be v2, v3, v4, v5, v6 and v7 in the cyclic

order. Let v1v2v3, v1v3v4, v1v4v5, v1v5v6, v1v6v7 be 3-faces. Let v1v2v8v7 be a 4-face

and v2 be a 4-vertex. The remaining neighbour of v2 is v9. Let f1 be the face partially

bounded by v8v2v9 and f2 by v3v2v9. This is demonstrated in Figure 16.

Let H be the induced graph on G \ {v1, v2} but with the added edges v8v9 and v3v9.
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v8
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v6 v5
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v2

v9 v3
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f1 f ′
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Figure 16: Configuration of Lemma 3.20 and reduction.

Then by the extremity of G, H has an L-coloring c. Then as v7 and v8 are adjacent,

they have different colors. Again we consider two cases:

Let c(v8) > c(v7). Color v1 by a color from L(v1) different from c(v3), c(v4), c(v5),

c(v6), c(v7) and c(v8). Call it c(v1). Color v2 in a color from L(v2) different from c(v1),

c(v3), c(v8), c(v9), c(f ′1) and c(f ′2). This is a L-UM-coloring as on the 4-face v1v2v8v7 the

maximal color is that of either v1, v2, or v8.

Let c(v7) > c(v8). Color v2 by a color from L(v2) different from c(v3), c(v7), c(v8),

c(v9), c(f ′1) and c(f ′2). Call it c(v2). Then color v1 in a color from L(v1) different from

c(v2), c(v3), c(v4), c(v5), c(v6) and c(v7). This is a L-UM-coloring as on the 4-face

v1v2v8v7 the maximal color is that of either v1, v2, or v7.

So there is a L-UM-coloring of G.

Now the existence of an extremal counter example will be disproved by the discharging

method. The initial charge of each d(f)-face f ∈ F (G) is d(f)−4, and the initial charge

of each d(v)-vertex v ∈ V (G) is d(v)− 4. By Euler’s formula the total amount of charge

is

∑
v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) = 2|E(G)| − 4|V (G)|+ 2|E(G)| − 4|F (G)| = −8.

The initial charge is redistributed by the following rules.
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3 Conflict-free and Unique-maximum colorings of plane graphs

Rule V5 A 5-vertex incident in at most two 3-faces shall give each incident 3-face 1/2

units of charge. A 5-vertex incident in three 3-faces shall give each incident 3-face

1/3 units of charge.

Rule V6 A 6-vertex incident in at most four 3-faces shall give each incident 3-face 1/2

units of charge. A 6-vertex incident in five 3-faces shall give each incident 3-face

1/3 units of charge.

Rule V7 A 7-vertex incident in at most six 3-faces shall give each incident 3-face 1/2

units of charge. A 7-vertex incident in seven 3-faces shall give each incident 3-face

1/3 units of charge.

Rule V8 A ≥ 8-vertex will give every incident 3-face 1/2 units of charge.

Rule E1 A ≥ 5-face will give 1/2 units of charge to every 3-face adjacent via an edge

joining two 4-vertices.

Rule E2 A ≥ 5-face will give 1/6 units of charge to every 3-face adjacent via an edge

joining a 4-vertex and a ≥ 5-vertex.

Note that rules V5-8 do not allow a vertex to give out more charge than it started

with, therefore any vertex after the application of the rules has non-negative charge.

4-faces are unaffected by the rules so they keep zero charge. Now we look at the charge

of the remaining faces after our rules have been applied. We start with the ≥ 5-faces.

Lemma 3.21 (Wendland [72]). Every ≥ 5-face after the rules have been applied has

non-negative charge.

Proof. Consider a ≥ 5-face, let v1, v2 and v3 be 3 succesive vertices on its boundary.

If Rule E1 applies to the edge v1v2 then the other face partially bounded by v2v3 is a

≥ 4-face by Lemma 3.17 part 4, since otherwise two 3-faces would share the 4-vertex

v2. If the edge v1v2 uses Rule E2 with v2 being the 4-vertex, then Rule E2 can apply

with respect to v2v3. Therefore the ≥ 5-face sends out through any two consecutive

edges at most 1/2 units of charge. Therefore ≥ 6-faces have non-negative charge after

discharging.
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3 Conflict-free and Unique-maximum colorings of plane graphs

Let f be a 5-face v1v2v3v4v5. The initial charge of f is 1. If no edge on the boundary

of f uses Rule E1, it gives out at most 5/6 units of charge, 1/6 for every edge. Suppose

v1v2 uses Rule E1, then v1 and v2 are 4-vertices. By Lemma 3.17 part 4 again, the other

faces containing v2v3 and v1v5 are ≥ 4-faces, so no rule applies with respect to them.

Since we know that at most 1/2 units of charge is sent through the two consecutive edges

v3v4 and v4v5, 5-faces have non-negative charge after the rules are applied.

Lemma 3.22 (Wendland [72]). Every 3-face after discharging has non-negative charge.

Proof. We distinguish cases based on how many 4-vertices are incident to a 3-face f .

Recall that the initial charge of f is −1.

1. Three 4-vertices. By Lemma 3.17 part 4 and Lemma 3.18 each edge of the 3-face

is incident to a ≥ 5-face. Therefore by Rule E1 the face f receives 1/2 unit of charge

from each of these three ≥ 5-faces. So its final charge after the Rules are applied is 1/2.

2. Two 4-vertices. From Lemma 3.18 the edge of the 3-face that is joining the two

4-vertices is also contained in a ≥ 5-face. By Lemma 3.17 part 4, the other two faces

incident with f are ≥ 4-faces. Then there are three possibilities regarding the remaining

vertex which we call v: v is either a ≥ 6-vertex, a 5-vertex incident with two or less

3-faces, or a 5-vertex with three 3-faces. These cases are represented in Figure 17.

v

4-vertex

other vertex

≥ 5-face≥ 5-face≥ 5-face

≥ 4-face ≥ 4-face

≥ 5-face ≥ 5-face

≥ 4-face ≥ 4-face

f f f

Figure 17: Configurations in 2.1, 2.2 and 2.3.

2.1 The vertex v is a ≥ 6-vertex. Note that the number of 3-faces incident with

v is at most d(v) − 2, since it is adjacent to two ≥ 4-faces. So by Rules V6-8, the face

receives 1/2 units of charge from v. It also receives 1/2 units of charge from the ≥ 5-face
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3 Conflict-free and Unique-maximum colorings of plane graphs

containing the other two vertices of f by Rule E1. Therefore the face f has non-negative

charge after discharging.

2.2 The vertex v is a 5-vertex incident with three 3-faces. By Lemma 3.19

the faces incident with v that share an edge with the face f are ≥ 5-faces. By Rule V5

the face f receives 1/3 units of charge from v. The face f receives 1/6 units of charge

from each of the two ≥ 5-faces sharing an edge containing v by Rule E2. Finally, the

face f receives 1/2 units of charge from the ≥ 5-face sharing the edge not containing v.

Therefore after discharging the face has 1/6 units of charge.

2.3 The vertex v is a 5-vertex incident with two or less 3-faces. By Rule

V5 the 3-face receives 1/2 unit of charge from v. The 3-face also receives 1/2 unit of

charge from the ≥ 5-face containing the other two vertices from Rule E1. Therefore

after discharging the face f has non-negative charge.

3. A single 4-vertex. Let v be one of the two ≥ 5-vertices. The edge between v and

the 4-vertex is contained in the 3-face f and a ≥ 4-face by Lemma 3.17 part 4. The same

goes for the edge between the 4-vertex and v. Therefore the number of 3-faces incident

to v is at most d(v1) − 1. Then one of five cases happens with respect to v: v is ≥ 7-

vertex, v is 6-vertex incident with four or less 3-faces, v is a 5-vertex incident with two

or less 3-faces, v is a 6-vertex incident with five 3-faces or v is a 5-vertex incident with

three 3-faces. Note that v as a 5-vertex incident to four 3-faces is impossible because of

Lemma 3.17 part 2. See Figure 18 for clarification.

3.1 The vertex v1 is a ≥ 7-vertex. The face f receives 1/2 units of charge from v

by Rule V7. Since we have 2 choices for v, f has non negative charge after discharging.

3.2 The vertex v1 is a 6-vertex incident with five 3-faces. By Lemma 3.20

the edge between v and the 4-vertex is contained in a ≥ 5-face. By rule E2, the 3-face

receives 1/6 units of charge from the ≥ 5-face. By Rule V6, the 3-face also receives 1/3

units of charge from v. Together f receives 1/2 units of charge by this choice of v.
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4-vertex

v

other vertex

≥ 4-face ≥ 4-face

≥ 4-face

≥ 5-face

≥ 5-face

Figure 18: Configurations in 3.1, 3.2, 3.3, 3.4 and 3.5.

3.3 The vertex v1 is a 6-vertex incident with four or less 3-faces. The face f

receives 1/2 units of charge from v by Rule V6.

3.4 The vertex v1 is a 5-vertex incident with three 3-faces. By Lemma 3.19

the edge between v and the 4-vertex is adjacent to a ≥ 5-face. By Rule E2, the 3-face

receives 1/6 units of charge from the ≥ 5-face. By Rule V6, the 3-face receives 1/3 units

of charge from v. Together f receives 1/2 units of charge by this choice of v.

3.5 The vertex v1 is a 5-vertex incident with two or less 3-faces. The face f

receives 1/2 units of charge from v by Rule V5.

In each of the cases the face f receives 1/2 units of charge from v and the face adjacent

to the edge between the 4-vertex and v. Since we got two choices for v, f receives at

least 1 unit of charge. Thus f has non-negative charge.

4. No 4-vertex. By Rules V5-8 the face receives at least 1/3 units of charge from each
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3 Conflict-free and Unique-maximum colorings of plane graphs

vertex it contains. Therefore the 3-face has non-negative charge after discharging.

Now we can finally prove Proposition 3.15, by showing that such an extremal counter

example G does not exist.

Theorem 3.23 (Wendland [72]). If G is a plane graph then χ′pum(G) ≤ 7.

Proof. We know directly from the discharging rules that every vertex and every 4-face

have non-negative charge after discharging. From Lemma 3.21 and Lemma 3.22 we have

that every other face has non-negative charge as well after the rules have been applied.

But this contradicts the total amount of charge in the system. This implies that there

is no extremal counter example.

Since we could not find a counter example for lists of size five, and were able to prove

χ′pcf (G) ≤ 5 for all plane graphs G the subsequent Conjecture by Wendland [72] is still

open.

Conjecture 3.24 (Wendland [72]). If G is a plane graph then χ′pum(G) ≤ 5.
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4 Weak-parity colorings of plane graphs

The weak-parity (WP) coloring of hypergraphs was introduced by Cheilaris, Keszegh

and Pálvölgyi under the name odd coloring [18] as a generalization of the WP-coloring

of graphs with respect to paths defined originally by Bunde [16]. WP-colorings with

respect to paths instead of faces have been subject of many recent papers ([11], [34]).

Our definition of WP-colorings for plane was first discussed by Czap and Jendrol [20].

This concept was further examined by Fabrici and Göring [32].

These colorings are of interest for this thesis because CF-colorings are special cases of

WP-colorings. In a WP-coloring we want for every face f to have a color that appears

an odd number of times on the vertices incident in f whereas in a CF-coloring we want

for every face to have a color that appears exactly one time on the vertices in f .

In this chapter we will present results regarding WP-colorings, specifically bounds for

the maximum WP-chromatic number of plane graphs, collected in Table 3. Note that

our bounds for the maximum WP as well as the maximum PWP chromatic number are

sharp.

Coloring i Lower bound Upper bound
WP 3 3
PWP 4 4

Table 3: Table constraining the maximum chromatic number for plane graphs χi =
max{χi(G) : G planar} of the mentioned colorings.

One interesting note is that, although weak-parity colorings are less strict than conflict-

free colorings, most results for WP-colorings are obtained by looking at CF-colorings,

since the additional structure facilitates proofs. We start with an easy proposition that

follows straight from the definitions.

Proposition 4.1. For any plane graph G we have

1. χwp(G) ≤ χcf (G).

2. χpwp(G) ≤ χpcf (G).

We start with a trivial Lemma, that shows that a relatively big subset containing all

triangulations of plane graphs is trivially WP-colorable using only one color.
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4 Weak-parity colorings of plane graphs

Lemma 4.2. For any plane graph G where every face contains a odd number of vertices

we have χwp = 1.

Proof. Since every face of G contains a odd number of vertices we can color every vertex

black to obtain a WP-coloring.

We continue with the lower bound for weak parity colorings of plane graphs, which

means we need to find a graph that has a WP-chromatic number as big as possible.

Lemma 4.3. There is a plane graph G with χwp(G) ≥ 3.

Proof. Let G be two separate cycles C4 in the plane. Let f be the outer face f1 the

inner face of the first cycle and f2 the inner face of the second cycle. Note that G is

outerplanar. Suppose we can color G WP using two colors. For f1 to be colored WP

we need three vertices incident to f1 to be of one color which we call blue , and the last

one incident to f1 of the other color which we call black. By symmetry, the same goes

for f2, incident to the face f2 are either three blue vertices and one black vertex or one

blue vertex and three black vertices. But then there is an even number of black and blue

vertices incident in f . See Figure 19.

f1 f2f

G

Figure 19: A graph G consisting of two 4-cycles cannot be colored WP using two colors.

For PWP colorings the lower bound for plane graphs comes from the condition of

being proper, exactly like for the maximum CF-chromatic number.

Lemma 4.4. There is a plane graph G with χpwp(G) ≥ 4.
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Proof. We take G to be K4. Since any two vertices of K4 are adjacent, we need 4 colors

to color properly.

The upper bounds for the maximum WP- and maximum PWP-chromatic number

are directly implied by the upper bounds for the maximum CF- and maximum PCF-

chromatic number by Proposition 4.1. This yields

Corollary 4.5. For any plane graph G we have χwp(G) ≤ 3.

Corollary 4.6. For any plane graph G we have χpwp(G) ≤ 4.

4.1 List colorings

As with the PCF- and PUM-list colorings we will mention PWP-list colorings as well.

The upper bound as well as the lower bound for the maximum PWP-list chromatic

number of plane can both be deduced from already obtained results. Again straight

from the definitions we get the following Proposition.

Proposition 4.7. For any plane graph G we have χ′pwp(G) ≤ χ′pcf (G).

This implies together with Lemma 3.14 the maximum PWP-list chromatic number of

all plane graphs.

Corollary 4.8. For any plane graph G we have χ′pwp(G) ≤ 5.

Since we know that there are plane graphs that are 5-choosable, this implies that

our maximum PWP-list chromatic number is sharp, and there are plane graphs G with

χ′pwp(G) = 5.
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5 Other face-restricted colorings

In this section we summarize other face-restricted vertex-colorings and mention the most

important results for each type of coloring. Note that almost all of these colorings have

an edge-coloring version as well, which we will not further specify. This section is based

on a recent survey of Czap and Jendrol [21] about facially-constrained colorings of plane

graphs. Some colorings are topic of very recent research and thus may not have many

results available yet. We still mention them for the sake of completeness.

5.1 Rainbow colorings

A rainbow vertex coloring of a 2-connected plane graph G is a coloring of its vertices

such that any two distinct vertices incident with the same face receive distinct colors.

The rainbow chromatic number or the rainbowness of a 2-connected plane graph G,

denoted by rb(G), is the smallest number of colors used in a rainbow vertex coloring of

G. This graph invariant was introduced by Ore and Plummer [61] as the cyclic chromatic

number. Obviously rb(G) is bounded from below by the size ∆∗ of the largest face of G.

For easy readability of the results we define the function rb(∆∗) := max{rb(G)|∆∗(G) =

∆∗}.
Ore and Plummer [61] showed that rb(G) ≤ 2∆∗. Borodin [7] slightly improved this

bound to rb(∆∗) ≤ 2∆∗−3 for ∆∗ ≥ 8. In the last twenty years there has been significant

progress, Borodin et al. [10] managed to prove the upper bound of b9
5
∆∗c. The currently

best known general upper bound b5
3
∆∗c is due to Sanders and Zhao [66].

Better results are known for graphs with small maximum face sizes, which means

small values of ∆∗. The bounds for ∆∗ = 3, ∆∗ = 4 and ∆∗ = 6 are tight. The case of

rainbow vertex colorings for triangulations, i.e., ∆∗ = 3 is equivalent to the Four Color

Theorem, thus rb(3) ≤ 4. The case ∆∗ = 4 is Ringel’s problem [65] which was solved

later by Borodin [8] as rb(4) ≤ 6. The bound rb(6) ≤ 9 was proved by Hebdige and Král

[41]. The upper bounds rb(5) ≤ 8 [10], rb(7) ≤ 11 [39] and rb(8) ≤ 13 [73] are known as

well, but not necessarily tight.

The lower bound for rainbow vertex colorings b3
2
∆∗c is conjectured to be the best

possible which was shown to be asymptotically true by Amini et al. [2].
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5.2 Antirainbow colorings

Contraty to the last coloring, the antirainbowness of a connected plane graph G is the

maximum number of colors arb(G) that can be used in a vertex coloring of a plane graph

G without creating a rainbow face.

Ramamurthi and West [64] proved that for every plane graph G with independence

number α(G) ≤ |V (G)| − 1 it holds that arb(G) ≥ α(G) + 1. By pidgeonhole principle

we get for every plane graph G it holds that arb(G) ≥ dn
4
e+1 because of the Four Color

Theorem. In the same way Grötzschs Theorem implies that arb(G) ≥ dn
3
e+ 1 for every

triangle free plane graph G. It was conjectured in [64] that this bound can be improved

to dn
2
e+1. Partial progress towards this conjecture was obtained by Král [54] and it was

finally proven by Jungic et al. [49]. Furthermore [49] proves that every plane graph of

order n with girth g ≥ 5 has an antirainbow vertex coloring with at least dg−3
g−2n−

g−7
2(g−2)e

colors if g is odd and dg−3
g−2n −

g−6
2(g−2)e if g is even. Those bounds are known to be best

possible.

For the upper bound concerning arb(G) there are results from Dvořák et al. [27] which

show that for every 3-connected plane graph G of order n it holds that arb(G) ≤ b7n−8
9
c.

Furthermore, for every 4-connected plane graph G it holds that arb(G) ≤ b5n−6
8
c if

n 6≡ 3 (mod 8), arb(G) ≤ b5n
8
c − 1 if n ≡ 3 (mod 8) and for every 5-connected plane

graph G arb(G) ≤ b25
58
n− 22

29
c. The bounds for 3- and 4-connected plane graphs are best

possible.

Results from Negami [60] about antirainbow vertex colorings for plane triangulations

G show that α(G) + 1 ≤ arb(G) ≤ 2α(G). There are further results from Jendrol’ and

Schrötter for semiregular polyhedra [48] and 3-connected cubic plane graphs [47].

5.3 Polychromatic colorings

A polychromatic k-vertex-coloring of a plane graph G is an assignment of k colors

to the vertices of G such that each face of G has all k colors on its boundary. The

polychromatic number p(G) of a plane graph G is the maximum number k such that G

admits a polychromatic k-vertex-coloring.

It is obvious that for any graph G, p(G) is at most the number of vertices in a smallest
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face of G. Alon et al. [1] define this number as g and show that p(G) ≥ b3g−5
4
c for any

plane graph G. They showed that this bound is almost tight by presenting plane graphs

G for which p(G) ≤ b3g+1
4
c. On the other hand Bose et al. [12] proved p(G) ≥ 2 for all

plane graphs G.

There are more results if the graph G is Eulerian, i.e. every vertex of G has even

degree. So is by Heawood’s theorem [40], which states that every Eulerian plane tri-

angulation is proper 3-colorable, p(G) = 3 if and only if G is Eulerian. Hofmann and

Kriegel [42] proved that every 2-connected bipartite plane graph G can be transformed

into an Eulerian triangulation by adding edges only. By Headwood’s theorem this again

implies that p(G) ≥ 3. Horev and Krakovski [44] proved that every plane graph of

maximum degree at most three, other than K4 and a subdivision of K4 on five vertices,

admits a polychromatic 3-vertex coloring. Horev et al. [43] showed that every cubic

bipartite plane graph admits a polychromatic 4-vertex-coloring. Since any such graph

must contain a face of size four this result is tight.

Further results exist for rectangular partitions. These are partitions of a plane rectan-

gle into an arbitrary number of nonoverlapping rectangles, such that no four rectangles

meet at a common vertex. We define the corners of those rectangles to be vertices and

the line segments connecting the corners to be edges of our graph. See Figure 20 for

an example. Note that the results slightly modify the problem by ignoring the outer

face. Dinitz et al. [25] proved that every rectangular partiton admits a polychromatic

3-vertex-coloring and conjectured that every rectangular partition admits a polychro-

matic 4-vertex-coloring. This conjecture has eventually been proven by Dimitrov et.al

[24].

5.4 `-facial colorings

An `-facial vertex-coloring of a plane graph is a coloring of its vertices such that all the

vertices of any facial path on t vertices, t ≤ `+ 1, receive distinct colors. In other words,

any facial t-path is rainbow colored. This type of coloring was introduced by Král et al.

[57] as an extension of rainbow vertex-colorings. By completing one incomplete case in

[58] they proved that, for ` ≥ 5, b18
5
`c + 2 colors suffice for an `-facial vertex-coloring
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Figure 20: A rectangular partition of a plane rectangle and the resulting graph.

of any plane graph. Moreover they proved the upper bounds 8 for a 2-facial, 12 for

a 3-facial and 15 for a 4-facial vertex-coloring, i.e. every plane graph admits such a

coloring with at most that many colors.

For small values of ` there are results from Montassier and Raspaud [59] which improve

the general bound. They considered 2-facial vertex-colorings of plane graphs with big

girth and of K4-minor free graphs. They proved that every plane graph with girth

g ≥ 14 (respectively 10, 8) admits a 2-facial vertex-coloring using 5 colors (respectively

6, 7). They also obtained the best possible results that every K4-minor free plane graph

admits a 2-facial vertex-coloring using 6 colors and every outerplanar graph admits a

2-facial vertex-coloring using 5 colors. Havet et.al [39] show that every plane graph with

girth g ≥ 22 admits a 2-facial vertex coloring using 4 colors. Note that there are results

for 2-facial list vertex colorings as well ([38], [9]).

5.5 Nonrepetitive colorings

A vertex-coloring of a graph G is nonrepetitive if there is no path P of even order such

that the first half of P receives the same sequence of colors as the second half of P . The

minimum number of colors needed for such a coloring is the nonrepetitive chromatic

number, denoted by nr(G). This type of chromatic number was introduced by Thue [69]

for sequences and is therefore often called Thue chromatic number. Harant and Jendrol

[37] defined the facial nonrepetitive chromatic number of a plane graph G, denoted by

fnr(G) as the minimum number of colors needed to color the vertices of G so that the
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colors assigned to the vertices of any facial path form a nonrepetitive sequence.

They proved that fnr(G) ≤ 120 log ∆ for every 2-connected plane graph with maxi-

mum degree ∆ and fnr(G) ≤ 16 for plane Hamiltonian graphs. They conjectured that

the facial nonrepetitive chromatic number of plane graphs can be bounded from above

by a constant. Barát and Czap [5] proved this conjecture by showing that fnr(G) ≤ 24

for any plane graph G. Obviously fnr(G) ≤ nr(G), therefore fnr(G) ≤ 4 for trees [13]

and fnr(G) ≤ 12 for outerplane graphs as shown by Barát and Varjú [6] and Kündgen

and Pelsmajer [55]. Note that no plane graph G with fnr ≥ 6 is known and that there

are several results for facial nonrepetitive list chromatic colorings as well ([63], [33]).

5.6 Parity colorings

A parity vertex-coloring of a 2-connected plane graph is a coloring of the vertices such

that every face of a plane graph G is incident with zero or an odd number of vertices of

each color. The parity vertex chromatic number, denoted by par(G) is the minimum

number k for which G admits a parity vertex-coloring. If the parity vertex-coloring is

proper in the traditional sense, we call it proper parity vertex-coloring, whereas the

minimum number k for which G admits such a coloring is the proper parity vertex

chromatic number ppar(G).

Czap et al. [19] proved that every 2-connected plane graph G admits a proper odd

vertex-coloring with at most 118 colors. This bound was improved to 97 by Kaiser et al.

[50]. In [22] Czap et al. signifiantly improve this bound for 3-connected plane graphs

with the special property that faces of small sizes are in a sense far from each other.

They say that two distinct faces f and g touch each outher if they share a vertex. Two

distinct faces influence each other if they touch or there is a face h such that h touches

both f and g. If G is a plane graph where no two 3-faces influence each other, there is a

proper parity vertex-coloring of G in at most 6 colors. In the same way, if G is a plane

graph such that no two 4-faces influence each other we need at most 8 colors. For no

influencing 5-faces 12 colors are sufficient. A face f of size i is callled isolated if there

is no face g of size at least i touching f . They proved as well that if G is a 3-connected

plane graph where all faces of size at least 4 (respectively 5,6) are isolated, then it has
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5 Other face-restricted colorings

a proper parity vertex coloring with at most 12 (respectively 18,28) colors.

Czap [19] proved that ppar(G) ≤ 12 for any outerplane graph G and if G is bipartite

as well, 8 colors suffice. He presented an outerplane graph on 10 vertices, that is shown

in Figure 21, which requires 10 colors for such a coloring.

Figure 21: An example of an outerplane graph with no parity coloring using less than
10 colors.

Wang et al. [71] proved that only two 2-connected outerplane graphs need 10 colors,

the other outerplane graphs admit a proper parity vertex coloring with at most 9 colors.

Note that Czap and Jendrol [20] considered colorings such that for every face f of a

plane graph at least color c has to occur an odd number of times, which is considered

in Chapter 4 of this thesis.

5.7 WORM colorings

A (k, `)-WORM vertex-coloring of a plane graph G is an assignment of colors to the

vertices such that G contains neither a rainbow facial k-path nor a monochromatic

facial `-path. If G has at least one (k, `)-WORM vertex coloring then Wk,`(G) denotes

the minimum number of colors in a (k, `)-WORM vertex coloring of G. Clearly any

(k, `)-WORM vertex-coloring is also a (k, ` + 1)-WORM vertex coloring, which implies

Wk,`+1(G) ≤ Wk,`(G) ≤ Wk,2(G). By the Four Color Theorem we have Wk,2(G) = χ(G)

for any k ≥ 5 since we use at most 4 colors and can thus not obtain a rainbow path of

length 5 or more. This definition is motivated by recent papers from Bujtás and Tuza

[14] and [15] that consider a more general version of this coloring for arbitrary graphs.
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5 Other face-restricted colorings

5.8 Ranking colorings

A facial vertex k-ranking of a plane graph G is a coloring of its vertices with colors

1, . . . , k such that every facial path connecting two vertices with the same color contains

a vertex with a greater color. The smallest number k such that G has a facial vertex

k-ranking is denoted by r(G). These colorings are currently researched.

5.9 Packing colorings

A facial packing vertex-coloring of a plane graph G is a coloring of its vertices with

colors 1, . . . , k such that every facial path containing two vertices with the same color i

has at least i+ 2 vertices. Again, these colorings are currently researched.
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